教学目的:理解无穷小的概念,会比较无穷小的阶,并会应用等价无穷小计算极限
教学重点:无穷小的比较,等价无穷小在极限运算中的应用
教学难点:等价无穷小在极限运算中的应用
无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无穷小,同阶无穷小,等价无穷小。
有限个无穷小量之和仍是无穷小量。 有限个无穷小量之积仍是无穷小量。有界函数与无穷小量之积为无穷小量。
特别地,常数和无穷小量的乘积也为无穷小量。恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
有限个无穷小量之和仍是无穷小量。
有限个无穷小量之积仍是无穷小量。
有界函数与无穷小量之积为无穷小量。
特别地,常数和无穷小量的乘积也为无穷小量。
恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
免责声明:内容来自用户上传并发布,站点仅提供信息存储空间服务,不拥有所有权,本网站所提供的信息只供参考之用。